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SUMMARY 

An approximate analysis is presented for computation of three-dimensional sub- 

sonic flow in straight and curved diEEusers. The development parallels that of 

Briley and McDonald for Eorward-marching solution of viscous primary and secondary 

flows, but differs in the coordinate formulation used and in details of the approxi- 

mations. The present formulation is intended to facilitate the use of constructed 

coordinates in circumstances where it is difficult to maintain smooth behavior in 

higher derivatives. This analysis is applicable to nonorthogonal coordinate sys- 

tems having a curved centerline and planar transverse coordinate surfaces normal to 

the centerline. The primary flow direction is taken to coincide with the local di- 

rection of the duct centerline and is hence normal to transverse coordinate planes. 

The Formulation utilizes vector components (velocity, vorticity, transport equations) 

defined in terms of local Cartesian directions aligned with the centerline tangent, 

although tllc governing equations themselves are expressed in general nonorthogonal 

coordinates. For curved centerlines, these vector quantities are redefined in new 

local Cartesian directions at each streamwise location. The use of local Cartesian 

vnriablcs and fluxes leads to governing equations which require only Eirst deriva- 

tives of the coordinate transformation, and this provides Eor the aforementioned 

ease in using constructed coordinates. The analysis is applied to a particular 

Family OF duct and diffuser geometries having curved centerlines and superelliptic 

cross sections 7 using a nonorthogonal constructed coordinate system. Present com- 

puted resrllts are compared with available experimental measurements for different 

but related Flow conditions. Qualitative agreement is observed with regard to the 

formation of secondary flows, migration of streamwise vortices, and distortion of 

the primary flow. Additional experimental data is needed to provide a basis for 

detailed quantitative evaluation of the analysis and Elow predictions. 
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INTRODUCTION 

A continuing problem in the design of inlets for airbreathing propulsion sys- 

tems is the design of efficient subsonic diffusers. In the case of three-dimen- 

sional inlet diffusers, the cross-sectional shape of the ducting varies in the axial 

direction and it is frequently necessary to introduce offset bends (curved duct 

centerlines). The complicated diffuser geometry and the offset bends introduce 

strong secondary flows which have important effects on both diffuser performance 

and engine/inlet compatibility. A generalized subsonic diffuser analysis capable 

of being used as a design tool must account for several physical phenomena which 

frequently occur in practical diffusers. First, the analysis must be capable of 

treating the case when the wall boundary layers are turbulent and when the thick- 

ness is comparable to the local duct radius. Secondly, the analysis must be capable 

of treating the strong secondary flows which are commonly encountered in three- 

dimensional diffusers. 

Although solution of the three-dimensional Navier-Stokes equations would be 

definitive, more cost effective approximate methods are proving attractive. One 

such approximate method has been developed by Briley and McDonald (Ref. 1) where a 

set of governing equations are developed by introducing approximations into the 

Navier-Stokes equations and then solved by spatial marching. This paper reports 

on a study to modify the analysis of Ref. 1 for use in constructed coordinate sys- 

tems which may be nonorthogonal. By a judicious choice of dependent variables and 

of forms of the equations, some of the smoothness requirements for the coordinate 

system have been relaxed. 



ANALYSIS 

Coordinate Systems 

A coordinate system is more than merely the grid points at which the governing 

equations are written. The coordinate system manifests itself as the geometric 

terms in the governing equations as is related to resolution of the physical pro- 

cesses and various length scales within the problem being studied. Although it is 

easy to overlook the part that the coordinate system plays in the governing equa- 

tions, the requirements for a "good" coordinate system are found by finding the 

role these geometric terms play in the fluid dynamic equations. Different forms of 

the Navier-Stokes equations can impose different requirements for a coordinate 

system. For illustrative purposes a viscous term from two forms of the two-dimen- 

sional Navier-Stokes equations will be used. 

First consider a point P in reference Cartesian coordinates (x1, x2). The 

generalized coordinate lines are y' and y 2 
passing through P and the Cartesian 

velocities are u 1 2 
and u . Using the quasi-linear form of the Navier-Stokes equa- 

tions and Cartesian velocity components one of the viscous terms in the x 
1 

momentum 

equation would be 

J aP a a? ad --- 
Re ax2 av2 'L2 av2 -1 

where J is the Jacobian of the transformation from xi into yi and ay2/ax2 is a com- 

ponent of the inverse transformation tensor. The Jacobian as well as the elements of 

the inverse transformation tensor are all related to the gradient of the position 

vector at the computational grid points relative to a fixed, reference Cartesian 

coordinate system. 

Grid 

Coordinate 
Lines 

(1) 
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Before continuing, let us identify this term in familiar Cartesian coordinates. 

In this case J=l, ay2/ax2=l, y2=x2 and u'=U. By performing these simplifications 

we get: 

or 
I a au -- 

Re ay ( -) p av 

(2) 

which is the familiar form of the dominant viscous term in the Cartesian x momentum 

equation. From the simplicity of (2) one could easily forget the complexity of the 

term when expressed in general nonorthogonal form; but the complexity is real and 

the geometric terms are present and must be properly treated. 

Returning to (1) it can be seen that the mathematical requirements on the in- 

verse transformation tensor are the same as those on the fluids variables. That is, 

each element of (1) must be continuous, have continuous derivatives and be well de- - 

fined by the computational grid points being used to solve the problem. Since the 

geometric terms in (1) are directly related to first derivatives of the locations of 

the computational grid points and these are in turn differentiated, the requirement 

on both the geometry and the velocity field is that in going from one grid point to 

another the second derivatives must be continuous and well defined. In addition, 

if the discretization of the differential equations into the difference equations 

is to be accurate, the geometric derivatives must not be large compared to the fluid 

dynamic terms. 

As a second example, a corresponding viscous term is now examined in the general 

orthogonal form of the Navier-Stokes equations. For coordinate lines y' and y 2 
and 

for velocity components along the coordinate directions u1 and u2 this viscous terms 

is 

where h 
1 

and h2 are the metrics (e.g.) 

h, =((gy + (g2)"' 

(3a) 

(3b) 

To verify that this viscous term corresponds to the term examined in (1) for the 
1122 case of Cartesian coordinates the metrics are all set to unity, ul=U, x =y , x =y : 
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au iF+ - ( ) p aY2 (4) 

which corresponds to (2). 

Examination of (3a) shows that there is a second derivative of hl implying that 

hl must be continuous and have continuous derivatives. Equation (3b) shows that hl 

is itself a first derivative of the coordinate system. Thus, the requirement on the 

coordinate system for general orthogonal systems is that the coordinates must have 

continuous and well defined third derivatives. 

In constructing coordinate systems one of the constraints is the required 

smoothness. One measure of the required smoothness is the order of continuous der- 

ivatives required. The above example demonstrates that the form of the governing 

equations can directly influence the adequacy of the coordinate system. This ob- 

servation played a major role in both the selection of the forms of the governing 

equations and in the modifications made to the analysis of Ref. 1, which will now 

be discussed. 

Governing Equations 

The equations used in this analysis are based on the steady compressible 

Navier-Stokes equations. Three basic assumptions are made to permit a forward 

marching solution of the subsonic flow problem. First, the flow can be analyzed as 

being a primary flow with a transverse secondary flow. This primary flow is assumed 

to be approximately aligned with one of the coordinate directions. Second, the 

pressure field can be represented by a three-dimensional a priori -____ known pressure 

field, such as comes from a three-dimensional potential flow analysis, plus a one- 

dimensional correction for viscous blockage effects and pressure loss. 

P=P 3-D(x’,X2,X3) + P,Jx’) (5) 

The three-dimensional pressure field contains elliptic information about the flow 

(upstream influence). Third, the assumption of negligible second derivatives in the 

marching direction is also required to create an initial boundary value problem which 

can be solved by forward marching in one of the coordinate directions. 

With these assumptions the Navier-Stokes equations are written using Cartesian 

velocities, 
i 

Ui' and Cartesian coordinates, x . Although subsequent forms of these 
i 

equations are to be evaluated in general nonorthogonal coordinates, y , the use of 
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Cartesian velocities and Cartesian directions for the vector equations will result 

in the favorable smoothness properties discussed above. The Cartesian coordinate 

system x1, is rotated at each computational step to keep the x 3 
Cartesian direction 

aligned with the tangent to the duct centerline ensuring that even when the duct 

contains large bends, the x' coordinate direction is always roughly aligned with the 

primary flow direction. The xl coordinate direction is aligned with the outward 

facing normal. Special treatment of cases where the centerline curvature is zero 

is readily provided. The vector quantities, velocity and vorticity, are also 

transformed to stay consistent with the Cartesian directions. 

The velocity vector, V, is decomposed into a primary flow component, u3, normal 

to the cross plane and a secondary flow component. The secondary flow is further 

decomposed into parts associated with the irrotational cross flow, v 
4 

and the ro- 

where 

tational cross flow, V 
$ 

: 

ij =ij,+i& 

V,x( V#)' = 0 

v; (pi$) = 0 

and V 
S 

is the surface gradient operator in the cross plane: 

vss= dT+ avn aP a 
ad -j$T q dx’ ST+ aX2 

-__ 

a? ’ 

(6) 

(7) 

(8) 

for n=1,2. 

Since the x3 direction is the primary flow direction, the x3 momentum equation 

in Cartesian coordinates is 

au3 dP3-D ah -,- = - ___ 
p”j dxi ax3 - ~ + F, ax3 

(11) 
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where F 3 
3 is the body force in the x direction and ue is the effective viscosity. 

Using the nonorthogonal computational coordinates, yi, the x3 momentum equation: 

a+ au, ayi aP,+ av 3 aP,+ ~ = _ - 
P"j dxj ayl 

--- 
ax3 ayl 

___ -t F, 
ax3 ar3 

- $ 63j(l-6k3) $; 3" )I 
is solved along with the global mass flux conservation relation 

JJ w, 
-g dx’dx2 = 0 

the energy equation: 

ho = const. 

and the equation of state: 

p = P,-, + I’,-, = pRT 

to determine u 3’ p, and P l-D (x3> - 

The continuity equation is written as: 

dug 

Introducing a potential function @: 
au,p vs. (pV,c#d - - - ax3 

this Poisson equation is solved in the form: 

ad a 
ax' dvJ 

(12) 

(13) 

(14) 

(15) 

(16) 

(17) 

(18) 

ay' av2 a'+ 
+2p.--Y avn 

ax' ax1 aviau2 = - - 
m3 

ax3 ayn 



for k=1,2 where $ is defined by: 

and satisfies (8). 

The remaining unknown is the rotational cross flow velocity component, 7 
1 7 $' 

(19) 

This is found by cross differentiating and combining XI and x- momentum equations 

to form the vorticity transport equation in the x3 direction. One form.of this 

equation is: 

aa3 

‘j dxj - flj a”3 df a3 v -u.- - = & a2c3 + a( FI /P) a@2 /P) 
axJ J axJ p P axJ2 ax2 - ax’ 

+L at+ d du,- 
( ( P ax’ ax2 axJ 

$&!L -5 
> ( 

au2 
‘1 axk 

- 
axJ 

+ ,duk 
2J axk 1) 

I a?+ + P ax2axj ( 
3 + W - - 
ax] ax’ 

:8,j $$ 

1 

I a2tLe 
+ P ax' axj 

au2 + auj _ 
X ax2 

’ ( 
ap ap3-D ap ap3-D 

+2 ----- P ax2 ax’ ax’ ax2 ) 

where u 1 
and u 2 are components of 

(20) 

(21) 
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and the vorticity is defined as: 

au2 au3 a,=-- -- 
ax3 ax2 

au3 a4 a,= - - - 
ax’ ax3 

(22) 

(23) 

a,= du, - du, 
ax2 ax’ 

To solve this equation for 5 
$ 

a stream function, G in the x 3 direction , is 

introduced satisfying: 

(25) 

Using (24) the stream function and the nominally streamwise component of vorticity, 

$2 3' 
are related by 

i-l, = v, x vs 

= v,x (Q+V,) 
(26) 

q v,x s,cr 

i-L3 = v, x (+ v, x q) 

Equations (20) and (26) are solved simultaneously for 5 and L!~. Since the remaining 

parameters are either known functions or expressible in terms of known functions, 

R3 and T. 

Flow in Ducts with SuEelliptic Cross Sections 

The analysis of the previous section was applied to the flow in a general class 

of subsonic diffuser ducts. The duct centerline is defined by polynomials and the 

cross sections are described by superellipses in a plane locally normal to the cen- 

terline. The duct boundaries are coordinate surfaces, greatly simplifying the 

boundary conditions. This coordinate system is described in detail in Ref. 2. 

Note that the grid distribution functions of Ref. 2 have been replaced. For radial 

distributions to resolve the boundary layer: 
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tanh(Dr) 
A= 

tanh(D) (27) 

where R is physical radius, r is the radial computational coordinate parameter and 

D, the damping function which determines the severity of the distribution, is con- 

trolled through the parameter c1 by: 

2 D=- 
I-a 

(28) 

A circumferential distribution function is also used to cluster grid points 

into regions of tight wall curvatures. The equally spaced computational coordinate 

t is related to the physical angle 0 in a quadrant by the relation: 

where: 

t, =o, t,= I 

8, =o @I,= 7r/2 

Oc= tan-’ (S2) 

S = shape (ratio of major to minor axis) 

E= superelliptic exponent 

0, -0c 
IT= @,-0, ’ D = In (2mE+2*S) 

DZM = 
In(2nE +2nS) 

12-1, 

(29) 

c= & tanh-’ [ 
sinh(DZM.t,) - R*sinh(DZM.t2) 

cosh(DZM* t,) - R . cosh(DZMat2) 3 (30) 

El= o,+ 
a,- 0, 

, _ sinh (DZM.(t2-C)) (31) __- 
sinh (DZM.(tl-Cjj- 
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8, - 0, 
A= 

sinh (DZM(t2-Cl) - sinh (DZM(t’, - Cl) 

This distribution function, (29), clusters grid points toward 

of the effects of (27) and (29) are presented in Fig. 1 for a 

tional shapes. 

The governing equations used in this application are: 

MOMENTUM in the X3 direction 

a+ aUs a+ aPS+ av3 aPl-D 
puj ---&dyi = - - V-P - 

ax3 avl ax3 aY3 

(32) 

O=Oc. Several examples 

series of cross sec- 

from CONTINUITY 

ad aYk a+ 
( i 

ayk 2 a2+ 
=+I pz dyk+ps ( ) dYk2 

(34) 

au' aY2 a2+ 
+zp---:-T :-dY” apu3 

ax' ax' aylay 2 ax3 ayn 

VORTICITY TRANSPORT in the X3 direction 

aa3 a”3 
“. v -a.-- = 

J ax1 
tie aQ3 

J ax' Paxjn 
STREAM FUNCTION 

ad a I a\/" a+ I aYk 2 a2+ 
dxi dvi ( )- Pdxi ayk +p yj$ ( ) ayk2 

(35) 

(36) 

2 a? ay2 a2+ 
+PjgT --:-z--R, 

ax' aYiaY2 
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The vorticity transport equation was used in simplified form for convenience during 

the development phase of this study. Use of equation (20) for vorticity transport 

is anticipated. 

At each marching step the computational domain has two symmetry boundaries, a 

boundary which is the duct wall and a boundary which is a small tube surrounding 

the centerline singularity (see Fi. 2). The boundary conditions for the X3 momentum 

equation are nu/an=!l on the two symmetry surfaces where n is the local surface 

normal, u = 0 on the wall and 

du I dP -- 
“dX3=- p dx3 

nt the centerline. 

The scalar potential equation for @ has the boundary condition $=O on all 

boundaries. 

The vorticity and stream function equations are solved sequentially and coupled 

iteratively. The stream function boundary condition $=O is applied at all bound- 

aries. The vorticity boundary condition R3=0 is applied along the symmetry and 

centerline boundaries. On the wall the vorticity boundary condition is derived fol- 

lowing Briley & McDonald (Ref. l), by writing the stream function equation (36) on 

the wall using central difference formulas. The additional constraint needed to 

eliminate the added variable is the no-slip condition for the cross flow. These 

equations are 

ad a I au2 * + 1 ay2 __ 
( ) 
-- 

( > 
2 a2J, 

dxi dvj P ax' aY2 p X ay2’ 
(37) 

+ 2 & ay2 a2rC, = 
P axi axi aPaY 

-- li3 

and setting the slip velocity from the solution of the stream function-vorticity 

equations equal and opposite to the slip velocity from the solution of the scalar 

potential equation yields: 

a? v + a9 
aJ, ax' + ax2 w+ 

dv2 q ’ ay’ ay2 av' aY2 - --- - 
ax2 ax' ax' ax2 

(38) 
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where aY2 a+ 
v+= dX'3 

on the wall. 

The mixing length model used in this analysis employs the eddy-viscosity formu- 

lation for the Reynolds stresses, i.e., 
I! pT ad 

P V'VI '--RcZ. (39) 
I 

Hence, this formulation still suffers from the physical shortcoming that there 

is zero Reynolds stress wherever the velocity gradient is zero. In addition, the 

eddy viscosity formulation is isotropic which may be incorrect in many three-dimen- 

sional and swirling flows. However, for practical calculations of turbulent inter- 

nal flows there are as yet no other transport models which are either suitable or as 

relatively well developed. 

The mixing length turbulence model employed in this analysis is based on a 

mixing length distribution. The mathematical form of the expression for the tur- 

bulent viscosity follows from Ref. 3: 

where e is the mean flow rate of strain tensor 

F= 1/2[(VC) +(vVIT] 

The mixing length k? is determined from the Buleev formula (Ref. 4) 

I I -=- r2x$ de 
.!? 2K J J 

0 are defined in Fig. 3. where K is the von Karman constant and S and 

Potential Flow 

The present application of the analysis 

a three-dimensional potential flow to supply 

in the viscous flow analysis. The potential 

coordinate system by solving the equation 

v*+ = 0 

(40a) 

(4Ob) 

(41) 

presented in the previous section uses 

the a priori known pressure field used 

flow is computed in the computational 

or expressed in the computational coordinate system: 

(42) 

(43) 

13 



(44) 

+ea 
c 

ad a+ 
ax3 d 

-- 
ax3 ad ) 

q o 

where $ is the velocity potential, x1 are the Cartesian coordinates and y i are the 

computational coordinates. This equation is solved using an iterative scalar AD1 

procedure. The boundary conditions at the duct wall is that there is no flow 

through the wall, i.e. a+ -0 
rl- - 

Since the potential, 4, is dimensionless 

the inflow and outflow values are set to 0 and 1 respectively. The duct centerline 

would represent a coordinate singularity so the coordinate system used extends from 

the duct walls down to a small tube of finite radius around the centerline. The 

boundary condition applied at the centerline is derived from a zero velocity normal 

to the symmetry plane and permitting a velocity component tangent to the symmetry 

plane. Since the solution technique is iterative, the velocity boundary condition 

is lagged and updated every few iterations. The area in the tube around the center- 

line is small and this explicit, rather than implicit, handling of the boundary 

condition appears to have little if any adverse influence on the observed conver- 

gence properties of the solution procedure for solving Eq. (44). 

Once the converged value of the potential, $, is found, the non-dimensional 

velocities at each grid point are computed. These velocities are scaled to be 

compatible with the specified reference conditions. From the velocities the cor- 

responding pressure field is computed and values of pressure coefficient are com- 

puted and saved on permanent storage for later use in the viscous spatial marching 

calculations. 

Calculations 

The above analysis was applied to a series of test problems. The first case 

presented here is the flow in the entrance region of a straight circular pipe. The 

calculations were compared to the experimental data of Reshotko (Ref. 5). The ex- 

cellent agreement with the data is shown in Fig. 4 . 
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The second case was of turbulent flow through a circular pipe undergoing an 

S-shaped bend. The bend was offset 1 diameter in a streamwise distance of 5 dia- 

meters (Fig. 5). The entrance Mach number was 0.2 and the entrance Reynolds number 

was 10 6 . Although no test data was available to quantitatively evaluate the re- 

sults, the test case was apparently successful. A qualitative evaluation has been 

made by comparing salient features of the computed flow with the flow measured in a 

model of the Boeing 727 Center Duct Inlet (Ref. 6). It must be emphasized that the 

computed case was for different geometry, Reynolds number and Mach number than the 

tested case. However, not only are the classical secondary flow patterns clearly 

discernible in both cases, but the development of the secondary flow patterns ap- 

pears to occur in the same manner. The locations marked A, B, C and D refer to 

cross sections where comparisons will be presented. Sections A are near the center 

of the first bend, sections B are just after the inflection, sections C are just 

after the center of the second bend, and sections D are at the ends of the ducts. 

Figure 6 presents the contours of total pressure at the bottom of the 727 duct for 

stations A, B and C. The growing region of low total pressure is clearly seen. 

Also shown are contours of streamwise velocity at the bottom of the computed S-shaped 

duct. In the case presented these streamwise velocity contours have nearly the 

same shape as total pressure contours. Here again the growing region of low total 

pressure is clearly seen at the bottom of the duct. A comparison of sections D in 

Figure 7 shows the classical total pressure contour shapes for S-shaped bends. 

Figure 8 also shows these classical exit plane total pressure contours from three 

other S-shaped bends (Ref. 7). 

15 



SUMMARY AND CONCLUSIONS 

An analysis is presented for computing three-dimensional subsonic flow in dif- 

fusers. Following Briley and McDonald, approximations are introduced into the 

Navier-Stokes equations to produce a system of equations which can be solved by 

forward marching. This paper reports on a study to adapt the above analysis for 

use with nonorthogonal constructed coordinate systems. 

At each computational plane a local Cartesian coordinate system is defined at 

the duct centerline with one coordinate direction tangent to the centerline and 

another coordinate direction aligned with the outward facing normal. Special treat- 

ment of cases where the centerline curvature is zero is readily provided. Velocity 

components are defined to be aligned with these Cartesjan directions and those 

governing equations that are vector equations are written in these local Cartesian 

directions. At each marching station the vector quantities computed at the previous 

station are transformed into these new vector directions. 

The resulting partial differential equations are transformed into the construc- 

ted coordinate system. These equations contain only first derivatives of the ele- 

ments of the transformation from Cartesian to constructed coordinates as contrasted 

with the familiar general orthogonal equations which contain second derivatives of 

the metric scale factors (h's). This reduced sensitivity of the governing equations 

to the details of the coordinate system permits more flexibility in the coordinate 

construction process. A family of duct shapes with superelliptic cross sections is 

currently available within the code representing a large class of diffuser shapes. 

These coordinates are nonorthogonal. The analysis developed in this study is ap- 

plicable to more general cross-sectional shapes than are currently available within 

the code. 

The above analysis was applied to subsonic viscous flow in several ducts. 

Qualitative agreement with experimental measurements was encouraging since the 

formation and migration of the vortex seen in the measurements was also present in 

the computed results. Additional experimental data is needed to provide a basis for 

detailed quantitative evaluation of the analysis. 

The current version of the computer code solves the streamwise vorticity and 

stream function equations by coupling them through a sequential iterative procedure. 

A preferred method would be to solve these equations as an implicitly coupled block 

system. This is expected to improve convergence properties of these equations and 

permit larger streamwise steps to be taken. 
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Variation in Superelliptic Exponent (Shape=l). 
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Fig. lb - Variation in Shape (Exponent=2). 
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Fig. lc - Variation in Shape (Exponent=5). 
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Fig. 2 - Computational Domain. 
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I 

Fig. 3 - Notation for Calculating Buleev Length Scale. 
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Figure 8. - Contours of total-pressure loss coefficient at 
exit, (Ref. 5). 
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SYMBOL TABLE 

Cartesian coordinate 

General curvelinear coordinate 

Cartesian unit vectors 

Kroniker delta 

Velocity vector 

Velocity component 

Pressure 

Density 

Reynolds number 

Viscosity 

Effective turbulent viscosity 

Vorticity component 

Scalar potential function 

Stream function 

Radial computational 
coordinate parameter 

Azimuthal computational 
coordinate parameter 
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APPENDIX 

COMPUTER CODE INPUT AND OUTPUT 

The PEPSIG code input is of the form: 

MODE, TITLE 

Namelist Data 

. 

MODE, TITLE 

Namelist Data 

. 

MODE, TITLE 

Namelist Data 

. 

STOP 

The mode parameter selects which of the four functions available within the 

code are to be used. 

MODE - 4 geometric preprocessing 

3 geometry written for potential flow on logical unit BlO 

2 potential flow calculation 

1 parabolized Navier-Stokes 
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When operating in MODE = 4, the code will solve a series of simultaneous 

equations to determine polynomials Y = f(X) from tabulations of Y, Y' and/or 

Y" versus X. The input is specified through NAMELIST: 

SL - 
NEQ - number of equations 

XIN - input table of X values 

YIN - input of Y, Y' or Y" according to corresponding value of ID 

ID - 0 YIN is Y 

1 YIN is Y' 

2 YIN is Y" 

NX - number of locations in the interval Xl, X2 at which the resulting polynomial 

is to be evaluated. 

Xl, X2 - interval in which the resulting polynomial is to be evaluated 

The input for MODE = 3, 2 and 1 is provided through three Namelist tables. 

Although the code is still in the development stage and elegant input has not yet 

been devised, the Namelist method provides a serviceable means of setting up the 

cases to be run. The three Namelists are, in order of being read: GEOM, FLUIDS, 

and SWITCH. The numbers in parenthesis following the explanation of the input 

variable are the recommended values. 

$GEOM 

NRAD - Number of grid points in the radial direction (21) 

MTHETA - Number of grid points in the circumferential direction (21) 

RTUBE - Radius of the tube put around the centerline to remove the 

geometric singularity (0.01) 

P(l, J> - Coefficients of polynomial in x for shape factor - ratio of major to 

minor axis where: 

S.F. = P(l,l) + P(1,2) x + P(1,3) x2 + P(1,4) x3 . . . 

+ P(l,ll) x 
10 

P(2, J> - Coefficients of polynomial in x for radius of major axis 

P(4, J) - Coefficients of polynomial in x for superelliptic exponent 

between 2 and 10 

PA(3,1,J)- Coefficients of polynomial in x for transverse Cartesian component 

of centerline curve. Set to zero for straight duct. 
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NOTE: The P and PA arrays determine the location of the grid points. Since the 

position vector of the grid points is differentiated twice within the code, the 

piecewise polynomials describing these locations must be continuous to two 

derivatives. Small values of higher derivatives is also recommended. 

YZERO - Reference length in ft. (1.0) 

NS - Number of the last marching station to be computed 

N-FIRST - Number of the first marching station whose geometry is to be 

specified (usually 1) 

X(NFIRST) - Nondimensionalized location of first marching step whose geometry 

DX 

AP 

IPA 

VIS 

IPB 

IRSTIN 

IRSTOT 

JRSTIN 

JRSTOT 

NFILE 

NSAVED 

is to be specified 

- Initial step size 

- Ratio of consecutive step sizes in the marching direction 

x(i) = x(i-1) + AP* [x(i-l)-x(i-2)] 

- Circumferential distribution function, 2 is equally spaced, 

3 is automatic distribution, (3) 

- Q in Eq. (28) (.3) 

- Radial distribution function 2 is equally spaced, 3 is packed toward 

the wall (3) 

- The station number to be read in for restart 

If IRSTIN = 0, not a restart case 

- The interval for saving restart information 

If IRSTOT = 0, no restart information saved 

- Logical file name from which restart information is to be read 

- Logical file name onto which restart information is to be written 

- The sequence number in JRSTIN of the desired restart information 

- The number of restart stations saved on JRSTOT; must be initialized in 

inputs to the number of stations already written (and to be preserved) 

on JRSTOT. Nominally initialized NSAVED = 0. 

NOTE: By setting JRSTOT = JRSTIN and NFILE = NSAVED, one file can be used for both 

read and write information, without destroying the already saved information. 

SFLDIDS 

RZERO - Reference density in lbm/ft3 

UZERO - Reference velocity in ftfsec 

CMACH - Reference Mach Number 
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NOTE: Set either CMACH or UZERO and the other will be computed within the code. 

REY - Reynolds number based on UZERO, YZERO and RZERO. Reference viscosity is 

determined by VISCOS = UZERO*YZER@l-RZERO/REY 

KTURR - 0 Laminar 

- 1 Turbulent 

YSLOT(P)- Initial nondimensionalized boundary layer thickness 

SWITCH 

NElPF - Number of circumferential grid points used in potential flow 

NEPPF - Number of radial grid points used in potential flow 

IGDMP - 2 Dumps streamwise momentum equation coefficients loaded into 

matrix inverter 

0 No dump 

IPLOT - 1 Write plot file (logical unit 118) 

0 No plot file 

ICOEF(l,N) - Auxiliary array which controls various options within the code. 

In general a value of 0 means the option is off, a value of 1 means on. 

N 

1 COEFG convective terms printout 

2 COEFG first viscous terms printout 

3 COEFG second viscous terms printout 

4 COEFG inviscid pressure gradient printout 

5 COEFG viscous pressure gradient printout 

6 PFIELD, CPI=O 

7 PFLOW inter dump -1, full dump 1 or 2 

8 EI dump from CROSEC 

9 output PHI, PSI velocities 

10 output PHI, PSI Cartesian velocities 

11 output Cartesian velocities 

12 AD1 dump PSI 

13 AD1 dump vorticity 

14 AD1 dump PHI 
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15 input NAMELIST dump 

16 IPRFSE dump 

17 DYFA mixed der. diagnostic message 

18 level 2 output 

19 PFIELD drum reading information 

20 output for ITER=1,2 

ICOEF(2,N) N 

1 wall vorticity for no slip (COEFVS) 

2 No wall damping on NLEN 

3 COEFVS iteration print 

4 Buleev mixing length formula 

5 number of pressure iterations in ADICDP 

6 auxiliary variable printout 

7 auxiliary variable printout 

8 auxiliary variable printout 

9 auxiliary variable printout 

10 auxiliary variable printout 

11 auxiliary variable printout 

12 auxiliary variable printout 

13 auxiliary variable printout 

14 PFLOW intermediate solutions 

15 FRAME printout 

16 AD1 convergence information 

17 DPDXV iteration printout 

18 printout 3 level velocity .and vorticity 

NOTE: 

It is advisable when running the potential flow calculation for the elliptic. 

pressure field (MODE=3,2) to add constant area extensions both upstream,and down- 

stream of the duct to be evaluated in order to minimize the effects of the upstream 

and dol.mstream boundary cqnditions. 

33 



The output for MODE=4 presents the coefficients of the polynomial and an 

evaluation of the polynomial at NX points in the range from Xl to X2. Displayed 

are the values of the polynomial along with the first and second derivative. 

8L 
NEQ- 6 
x1= 0.0 
x2= 10.0 
NX-- 11 
XIN' 3x0.0, 3x10.0. zro.0 
YIN' 3x0.0, 2.0. 4MO.O 
yDo, 1. 2. 0, 1. 2. 2x0 

ANSWER 
ANSWER : 

0.12000000E-03 
-0.30000000E-02 

ANSWER 
ANSWER t 

0.20000000E-01 
0.00000000 

ANSWER 0.00000000 
ANSWER 6' 0.00000000 

0.~0000000 
0.10000000E 01 
0.20000000E 01 
0.30000000E 01 
0.40000000E 01 
0.50000000E 01 
0.60000000E 01 
0.70000000E 01 
0.80000000E 01 
0.90000000E 01 
0.10000000E 02 

M xxx 5 
Y xwn 4 
It xx* 3 
al xww 2 
N xx* 1 
3f xxr 0 

Y YP YPP 
0.00000000 

0.1?120000E-01 
0.11584000E 00 
0.32616000E 00 
0.63488000E 00 
0.10000000E 01 
0.13651200E 01 
Oei6738400E 01 
0.18841600E 01 
0.19828800E 01 
0.20000000E 01 

0.00000000 
0.48600000E-01 
0.1536OOOOE 00 
0.26460000E 00 
0.34560000E 00 
0.37500000E 00 
0.34560000E 00 
0.26460000E 00 
0.15360000E 00 
0.48600000E-01 

-0.8881?842E-15 

The output for MODE=3 provides summary tables of geometric information includ- 

ing the absolute value of the radius of curvature of the centerline. 

JX 
4 

2 
7 
i 
9 

:i 

:: 
14 

JX 

: 

; 
&i 
9 

2 

:3’ 
14 
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oxoooooooo 
0.99OiOOOOE 00 
0.19800000E 01 
0.29700000E 01 
0.39600000E 01 
0.49500000E 01 
0.59400000E 01 
0.69300000E 01 
0.79200000E 01 
0.891000OOE 01 
0.99000000E (I1 

0x00000000 
0.99000000E 00 
0.19800000E 01 
0.29700000E 01 
0.39600000E 01 
0.49500000E 01 
0.59400OOOE 01 
0.69300000E 01 
0.79200000E 01 
0.89100000E 01 
0.99000000E 01 

SHAPE NAJOR AXIS 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.100OOOOOE 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 
0.10000000E 01 0.10000000E 01 

CENTZFLINE LOCb iTION (Xl, 
..- 
0.00000000 

O.l6638311E-01 
0.11279103E 00 
0.31826750E 00 
0.62110264E 00 
0.98125125E 00 
0.13442822E 01 
0.16550729E 01 
0.18715030E 01 
0.19781495E 01 
0.19999803E 01 

,X2.X3) 
X2 

0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 

ROTATION 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 
0.00000000 

EXPONENT 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 
0.20000000E 01 

RAD OF CURVE 
0.00000000 

0.11688730E 02 
0.89884780E 01 
0.10856523E 02 
0.19796253E 02 
0.40607325E 03 
0.21837661E 02 
0.11290609E 02 
0.9008738E.E 01 
0.11025311E 02 
0.85892988E 02 



I 

Upon successful completion of writing the geometry on file #lO the following 

message is written: 

GEOMETRY WRITTEN FROM STATION 5 AT X’0.9900E 00 TO STATION 14 AT X-0.9900E 01 FOR ITCNT’ 3 

The output for MODE=2 consists of intermediate printout information about the 

iteration followed by a tabulation of the information written on the pressure field 

file logical unit 13. Listed at each transverse computational plane are the stream- 

wise plane number, the parametric location of the centerline, the radius from the 

centerline of each row of grid points expressed as a fraction of the local duct 

radius, the azimuthal location in radians of each radial line of grid points, and a 

two-dimensional display of pressure coefficient, Cp, at each node used in the poten- 

tial flow calculation. 

San;;; AT Lz- 3 ,-O.99OOOE 00 
0.11111 0.22222 "i?::Z 0.44444 0.55556 0.83261D-16 cl.316Jc3 0.70167 1.3661 1.7755 "i"E: 0.77778 0.11809 1.00100 2.4329 2.7552 3.1416 

10-0.,5456E-02-0.,0759~-02-0,16674E-02 O.J5862E-0, 0.,096,E-02 0.63416E-02 0.89146E-02 0.10,42E-01 0.11978E-01 O.,2390E-01 
9-0.,3965E-02-0.29,58E-O2-0.~5546E-02 0,4,,66E-03 0,3,2,.3E-02 0.63094E-02 0.88,87E-02 0.10636E-01 0.1,852E-0, 0.12257E-01 
~-0.29492E-02-0.25156E-02-0.12155E-OZ 0.65960E-01 O.,1992E-02 0.62135E-02 0.86117E-02 O.lOSlt.E-01 O.,l’,,ZE-01 0.11856E-01 
,-0.22555E-02-0.18635E-02-O,6.,812E-OS O.,Ol,.SE-02 O.,319,E-02 0.60631E-02 O.82542E-02 0.9.,154E-02 O.l08,2E-01 0.11224E-01 
6-0.136C5E-02-O.,O254E-02-0.8,3,,E-05 0.14662E-02 O.J4,45E-02 0.58668E-02 O.,,(159E-02 0.91561E-02 0.10084E-01 O.10392E-01 
5-O.J2l,OE-O,-0.45531E-04 O.,8,28E-OS 0.19994E-02 O.,6552E-02 0.56323E-02 O.,2261E-02 0.8,66,E-02 0.91392E-02 0.91966E-02 
4 O.822O,E-OS O.,O329E-02 0,16648E-02 0.258,,E-02 O.J852,E-02 0.536,4E-02 0.65943E-02 O.,4,46E-02 0.10,14E-02 O.(12702E-02 
3 0.2025OE-02 0.2165,E-02 0.25.5,3E-02 O.,2059E-02 O.‘+O5,5E-02 0.50798E-02 0.59100E-02 0.65088E-02 0.6915,E-02 O.,O5O,E-02 
2 O.,2352E-02 O.,3053E-02 O.,5155E-02 O.S8262E-02 0,42594E-02 0.47008E-02 0.52029E-02 0.550,6E-02 0.5,163E-02 0.5,.,58E-02 
1 0.441,2E-02 0.44190E-02 0.44245E-02 0.442,5E-02 0.446,1E-02 0.45505E-02 0.4581,E-02 0.45801E-02 0.45863E-02 0.45884E-02 

SOLUTIOH AT Lz= 4 4 0.00000 
0.00000 
0.13267D-16 !:::::A 

0.22222 cl.,,,33 0.44444 0.55556 0.6666, 0.77778 
0.7016, 1.0186 1.366l 1.7755 r.12,o 2.4329 

IO-0.68654E-OS-O.l~OZ,E-OS O.,SSL,E-02 0,34925E-02 0,6,,66E-02 O.P,245E-02 O.,2,2OE-01 0,1414.,E-01 O.l5375E-01 O.l5,83E-01 
9-0.52JOZE-O3-0.28365E-04 0.14525E-02 0,35619E-02 0,6,91,E-02 0.96,85E-02 0.122,1E-01 0,14O,JE-01 0,15244E-0, 0.15646E-01 
I-O.,0049E-04 0.4,299E-0, 0,111,8E-02 O.S,9,1E-02 0.64642E-02 0.9568OE-02 O.,1987E-01 0.13,O,E-01 0.1485JE-01 O.,52,6E-01 
7 O.,2588E-9, O.,142OE-02 0.23.,46E-02 O.‘+1683E-02 0.65856E-02 0.9404,E-02 0.11612E-01 O.l,lE.,E-01 0.14241E-01 0.14592E-01 
6 O,1686,E-02 0.20440E-02 0,31104E-02 0.46481E-02 0.6,465E-02 0.9,99OE-02 0.11129E-01 0.1251,E-01 0.1,442E-01 O.,J,5OE-01 
5 0,27986E-02 O.J0901E-02 O.J9564E-02 0.52,2OE-02 0.693.S4E-02 O..S9604E-02 O.,O559E-01 O.,l,l,E-0, O.l2489E-0, 0.12,46E-0, 
4 0.40141E-02 0.42349E-02 0.41165E-02 0.58,53E-02 O.,1528E-02 0.869,,E-02 0.99231E-02 0.10814E-01 O.I14,6E-01 O.llb14E-01 
, 0,5281,E-02 0.54352E-02 0.5865,E-02 0.6494,E-02 O.,38,3E-02 O..34199E-02 0.9242E.E-02 0.9.S482E-02 0.10259E-01 0.10,94E-01 
2 0.65,06E-02 0.66436E-02 0.685JlE-02 O.,1611E-02 O.,6136E-02 0.81412E-02 0.85526E-02 0.8161OE-02 0.90,26E-02 0.9140,E-02 
1 O.,82,,E-02 O.,.S358E-02 O.,86,4E-02 O.,.S968E-02 O.,94,6E-02 0.10192E-02 0.80163E-02 O.,9691E-02 O.,9364E-02 O.,9241E-02 
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The output for MODE=1 consists of the geometric summary information shown [or 

MODE=3. Also presented at each streamwise station are the cross sectional area of 

the duct and tllc mass flux. Two-dimensional tabulations of several parameters ;lre 

also provided in the cross plane. These are : 

MI) IIJS - distance/YZERO From duct centerline 

THETA - ;lngle from symmetry plane 

VEL-S - streamwise velocity /UZERO 

VEL-TH - azimuthal velocity component/UXERO in the direction of the 

local a2 imuthll coordinate 

VEL-R - r;ldi;ll vclo~ity/UZERO 

RHO - dens i ty/RZKKO 

CP/2 - II:ILI the pressure coefficient 

VOR - component of the vorticity vector parallel to tile c,rnterline 

>iUT - turbulent viscosity/LAMINAK VISCOSITY 

LEN - mixing length used in Lurbulence viscosity cillculat ion 

Tl~e output is presented for LEVEL 1, which is tile results of the calculation. 

The only exception is for station 2 where the output is first presented at LEVEL 3, 

then at LEVEL 1. The LEVEL 3 output is the station 1 input which has been revised 

to be consistent with the governing equations. 

The logical file name convention used by the code is: 

5 Card image input 

6 Printed output 

8 Plot File NASA LeRC format 

9 Scratch storage - Z array and PFL!)W 

10 Geometry for PFLOW 

11 Restart 

12 Restart 

13 Pressure field 

The assignment and cataloging of these files is machine and site dependant 

and it is the responsibility of the user to make them available to the code. 
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